
SYSTEMS ANALYSIS OF HEAT AND MASS TRANSFER 

V. V. Kafarov and I. N. Dorokhov UDC 66.011.001.57:519(043.3) 

Methodological principles of systems analysis of the processes of heat and mass 
transfer are presented. The concept of a complex physicochemical system is 
introduced and principles of a strategy for analyzing heat-exchange processes 
and synthesizing their mathematical description are formuSated. 

Scientific--technical progress in all sectors of the national economy (including the 
chemical, petrochemical, and petroleum refining industries) depends to a large degree on 
the efficient use of scientific resources, the quality and results of scientific investiga- 
tion, and a high level of development of the theoretical principles of production-process 
technology. 

An important factor in improving the quality of scientific investigation is its organiz- 
ation into the form of a comprehensive scientific treatment, consisting of the study of the 
given object using the methods of various sciences, the elaboration of an integral theoreti- 
cal picture of the phenomenon in question, and, on this basis, the development of specific 
scientific recommendations for practical applications. 

The logical--mathematical foundation of such a comprehensive treatment is systems analy- 
sis, which combines several scientific disciplines -- cybernetics, information theory, the 
general theory of complex systems, semiotics, etc. At all levels of the chemical industry, 
the systems approach has become the primary approach used in solving problems of design, 
optimization, management, and optimum planning. 

At the level of individual production operations, however, the principles of systems 
analysis and the powerful formal apparatus of the latter have not yet been sufficiently 
widely used. Together with this, an individual production process -- with its complex set 
of component physicochemical phenomena -- is a typical large system. The variety of the 
attendant phenomena, the degree to which these phenomena are interrelated, and the combina- 
tion and interaction of phenomena of a different physicochemical nature within a local 
volume of the production unit are of such a magnitude as to make the individual chemical 
production process one of the most complicated cybernetic systems. 

The prerequisites for a systems approach to analyzing and designing chemical production 
processes were supplied by works dealing with the theoretical foundations of chemical tech- 
nology, continuum mechanics, the thermodynamics of irreversible processes, chemical thermo- 
dynamics, and mathematical methods of investigating complex systems. 

Despite the obvious advances made thus far in the quantitative description of chemical 
production processes, abetted by the development of methods of physical and mathematical 
modeling and the broad use of computer technology, the construction of an adequate descrip- 
tion of production processes is often impeded by the lack of a comprehensive approach to the 
problem based on the strategy of systems analysis. This is particularly true of processes 
with a complex internal structure. Foremost among such processes are hydrodynamic, diffu- 
sive, and thermal processes occurring in inhomogeneous polydispersed media and complicated 
by the simultaneous occurrence of a large number of effects of a different physicochemical 
nature. Here, a comprehensive solution to the problem is that which, on the basis of the 
use of methods of different sciences -- phenomenological mechanics of inhomogeneous media, 
theory of heat and mass transfer, statistical hydromechanics, thermodynamics of irreversible 
processes, chemical thermodyanmics, and the general theory of complex systems -- offers an 
integral theoretical picture of the process in question and, on this basis, permits specific 
recommendations to be made to solve practical problems. 
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The processes of heat and mass transfer are usually analyzed from doterministic posi- 
tions, it being assumed here that they can be described according tO phase by equations of 
heat and mass transfer, using for each phase the classical deterministic equations of 
Fourier and Fick for thermal and diffusive flows. 

For engineering calculations, these equations are usually reduced to dimensionless 
criterional equations of the familiar form Nu = APempr n and, using the principles of physical 
similitude, the constants A, m, and n are determined empirically. Within the empirical 
limits of change in the determining parameters, equations such as the above make it possible 
to sufficiently accurately design heat- and mass-transfer equipment for single-phase steady 
flows with a fixed solid surface (wall). However, in the case of the multiphase, multicom- 
ponent systems most characteristic of heat-exchange processes, the above approach proves to 
be wholly inadequate because it does not take into account the stochastic nature of the 
effects. 

The stochastically determined nature of the effects of heat and mass transfer and 
their nonsteady character under conditions of a constantly renewed phase boundary, polydis- 
persion, fragmentation, and coalesence -- distorting the effect of the hydrodynamic and 
thermal fields on the distribution of concentrations at both micro- and macrolevels -- make 
it necessary to examine the process of heat and mass transfer as a complex, dynamic, stochas- 
tically determined physicochemical system. 

Formalizing the process of heat and mass transfer, we introduce the concept of a 
physicochemical system (PCS), in which the process of heat and mass exchange is taking place. 
In the general case, the PCS is a multiphase, multicomponent continuous medium distributed 
in space and variable over time. Transfers of matter, energy, and momentum occur at each 
point of homogeneity of the PCS and at the phase boundaries in the presence of sources 
(sinks) of matter, energy , and momentum. 

From the point of view of the above definition, the process of heat and mass exchange 
may be represented as a set of stochastically determined effects occurring in a PCS charac- 
terized by a high degree of complexity and definable in terms of its hierarchical structure 
and the quantity of information contained within it. 

Systems analysis of the processes of heat and mass exchang e includes three stages: 
qualitative analysis of the structure of the PCS; mathematical description of the PCS or 
synthesis of its functional operator (mathematical model); determination of the adequacy of 
and identification of the mathematical model of the PCS [i, 2]. 

Qualitative Analysis of the PCS 

Within the framework of the qualitative analysis of the PCS, a priori information on 
the physicochemical features of the object are formalized in the form of diagrams illustrat- 
ing the mutual effects of the physicochemical phenomena in which the nodes correspond to 
individual phenomena and the oriented arcs correspond to assumed cause-and-effect relations 
between them [i]. The many physicochemical phenomena characteristic of a PCS are broken 
down into levels (degrees) and a hierarchy of levels within the general structure of PCS 
phenomena is established. Apart from the clarity of illustration offered by representing 
the structure of the PCS at different levels of detail, this technique permits direct quan- 
titative analysis using the mathematical tool of inexact sets, formulations, and algorithms 
in order to obtain preliminary quantitative information on the system [3]~ 

Five levels may be distinguished in the hierarchical structure of the PCS with regard 
to the heat and mass transfer phenomena being discussed [i]: 

i) the set of phenomena on the atomic-molecular level; 2) effects on the scale of 
supermolecular or globular structures; 3) the set of physicochemical effects associated 
with the movement of a single inclusion of a dispersed phase, as well as phenomena of inter- 
phase energy and mass transfer; 4) physicochemical processes in an ensemble of inclusions 
moving in constrained fashion in a layer of continuous phase; 5) the aggregate of processes 
determining the macrodynamic conditions on the scale of the equipment. 

i. The first level of the hierarchy of PSC effects is characterized by physicochemical 
interactions on the molecular level. The system is considered homogeneous, i.e., the par- 
ticles (molecules) are ideally mixed, and the character of development and occurrence of 
the physicochemical processes is determined exclusively by the physical properties of the 
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above particles and the molecular viscosity, thermal conductivity, and coefficients of mole- 
cular diffusion. Environmental effects are important among the external factors which 
affect the physicochemical interactions between the particles. These phenomena manifest 
themselves in the form of kinetic, diffusive, thermodynamic, and topological changes in the 
medium. 

2. The second level of the PCS hierarchy is the set of physicochemical effects on the 
level of molecular globules. The structure of a chemically uniform system (i.e., a system 
of the first level) is complicated from a hydrodynamic point of view by the formation of 
supermolecular structures or globules within it. By such globules, we mean aggregates of 
closely situated molecules that exhibit relative thermodynamic stability (integrity) under 
the influence of hydrodynamic perturbations. Each globule behaves as an "elementary" phy- 
sicomechanical system exhibiting the entire range of thermal and diffusive effects. The 
system, completely broken down into individual aggregates of molecules, is evenly distribu- 
ted throughout the volume of the apparatus and is referred to as completely segregated. 
The phenomenon of segregation is characteristic of both continuous and dispersed phases. 
Segregation, and its effects on transfer processes, are particularly manifest in systems 
with a high viscosity. 

The above-examined aggregate of phenomena of the first and second levels is a component 
part of the effects of higher degrees of the PCS hierarchical structure. 

3. The following phenomena may be classed as belonging to the third level in the PCS 
hierarchy. An element of the dispersed phase (bubble, droplet) in which mass exchange is 
occurring both within the volume and at the phase boundary is moving in the continuous phase 
under the influence of buoyancy forces, inertial forces, and drag, being subjected at the 
same time to the effect of the mechanism of mass, energy, and momentum transfer through the 
phase boundary. It is natural to assume that nonequilibrium of the heterogeneous system is 
the initial reason for the appearance of the interphase flows of substances responsible for 
the entire aggregate of effects comprising the mechanism of interphase transfer. This non- 
equilibrium may be divided into several types: nonequilibrium with respect to temperature, 
composition, and velocity, ioe., a difference in the velocity of the phases. Each type of 
nonequilibrium first of all causes the transfer of the corresponding substance, at the same 
time having a cross (indirect) effect on the transfer of the other substances. 

The flows of mass and energy cause a change in the enthalpy of the continuous and dis- 
persed phases, and also account for other physical and thermodynamic characteristics of the 
phases: viscosity, density, heat capacity, composition, temperature, etc. The changes in 
the physicochemical characteristics of the phases, in turn, affect the degree to which the 
heterogeneous system deviates from equilibrium. 

The transfer of mass and energy across the phase boundary also determines local irre- 
gularities in the surface tension of the boundary. These local changes in surface tension, 
in turn, are the main reason for the appearance of spontaneous interphase convection. This 
convection may be divided into two types: ordered, and disordered. The latter affects 
mass transfer between the phases as well as leading to deformation of the phase boundary, 
i.e., to a change in its shape and curvature. 
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The flow of momentum through the phase boundary at each point of the surface is the 
vector sum of two components: normal and tangential to the boundary. These components are 
responsible for the generation of circulation currents within inclusions. These currents 
intensify the processes of mass and heat transfer in elements of the dispersed phase. The 
normal and shear stresses at the phase boundary reorient the inclusion in space, changing 
the trajectory of its motion, and deform the phase boundary. 

Differences in the dynamic head of the turbulent eddies at individual points of the 
phase boundary contribute substantially to deformation of the boundary. The deformation 
may be so great that the boundary ruptures and the inclusion is broken up into smaller ele- 
ments. The breakup of inclusions can occur only under the influence of eddies that are of 
relatively low magnitude. The probability of severe deformations and inclusion fragmentation 
is diminished in the presence of large-scale eddies that are invariant over distances of 
the order of an inclusion diameter~ 

Velocity nonequilibrium of the phases leads to the appearance of surface diffusion, as 
a result of which surfactant is "blown to the stern" of the moving inclusions, thereby 
resulting in a nonuniform distribution of the surfactant over the surface of the inclusions~ 
This effect contributes significantly to the nonuniformity of the surface tension of the 
phase boundary and results in the appearance of additional drag (in competition with the 
shear stresses) which extinguishes the circulation currents inside the inclusions. 

Several effects are associated with deformation of the phase boundary, the most impor- 
tant of which are the following: a) fragmentation of droplets or bubbles and, connected 
with this, a change in the area of the phase boundary; b) the development of interphase 
turbulence from spontaneous emulsification and appearance of the phenomenon of surface elas- 
ticity; c) a change in the thermodynamic characteristics within the volume of the inclusion: 
saturation pressure, temperature, composition, degree of deviation from equilibrium, etc. 
The above-noted effects, connected with deformation of the phase boundary, intensify the 
processes of the interphase transfer of mass, energy, and momentum. 

4. The following effects belong to the fourth level of the PCS hierarchical structure. 
Each element of the dispersed phase, with the constrained motion of the inclusions in the 
limited volume of the continuous medium, leaves behind it a turbulent wake. Under the influ- 
ence of mainly Zhukovskii forces, the eddies from the individual wakes interact with one 
another and produce turbulence throughout the continuous phase. The surface of the inclu- 
sions located in the zone of interaction of the turbulent wakes are enveloped by the eddies 
of the continuous phase and brought into turbulent motion~ This affects the whole aggregate 
of physicochemical effects of the third hierarchical level. In particular, the change in 
the trajectory of movement of the inclusions raises the possibility of their collision and 
coalesence and, thus, a redistribution of the fields of concentration, temperature, and 
pressure within elements of the dispersed phase. At the same time, the turbulent pulsations 
of the continuous medium are damped as a result of dissociation of their energy into heat, 
which in turn causes a change in the heat content of the continuous phase. 

With the movement of a single inclusion in an unlimited volume of continuous medium, 
corresponding tensor fields of concentration, temperature, velocity, pressure, and other 
physicochemical characteristics are induced in the volume. In an actual production unit 
(apparatus), the continuous phase is limited in volume by the dimensions of the apparatus, 
and the movement of elements of the dispersed phase is of a mass nature. This leads to 
deformation of the concentration, temperature, and velocity fields. The above-described 
aggregate of effects is an essentially complex process, which we Will refer to as the con- 
straint effect. 

Phenomena associated with the fourth level of the PCS hierarchy determine the hydro- 
dynamic conditions in a local volume of the apparatus, andthe term "local hydrodynamics" 
is naturally used for the characteristics in this case. The local hydrodynamics are manifest 
within a certain volume (which is considered elementary, due to its small dimensions in rela- 
tion to the dimensions of the apparatus as a whole), although the dimensions of this volume 
are such that an isolated element in the volume contains sufficiently manydispersed-phase 
inclusions. The main quantitative characteristics of the PCS at this level of the hierarchy 
are the normal and shear stresses, strain and strain rate, viscosity and diffusion coeffi- 
cients, thermal conductivity, phase transformation rates, etc. 
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Usually, the semiempirical concept of locality is based on a determination of the ratio 
of the coefficient of turbulent exchange to the kinematic viscosity. The specifics of a 
given theory of interphase transfer depend on the specific methods used to divide the integ- 
ration interval and determine the coefficient of turbulent exchange at the phase boundary. 

The above-examined effects associated with the first, second, third, and fourth levels 
of the hierarchical structure of the PCS are closely related to one another and form the set 
of so-called microhydrodynamic factors, affecting the process of the transfer of substances 
in a heterophase multicomponent system. 

5. The fifth level of the PCS hierarchical structure is the aggregate of phenomena 
which determine the hydrodynamic conditions on the macrolevel in the apparatus. This set of 
effects characterizes the hydrodynamic structure of the flows in the unit as a whole (rather 
than in an individual local volume of the unit). 

The initial factor determining the specifics of the fifth-level effects is the design 
features of the apparatus itself. Such features include the dimensions of the unit, the 
types of mixing and heat-exchange equipment, the location of inlet and outlet nozzles, the 
presence and shape of baffles, diffusers, trays, distributing devices, etc. The following 
depend directly on these and other design features of the unit: the supply of external mecha- 
nical energy to the unit to provide for mechanical mixing within the system; the exchange 
(supply or withdrawal) of thermal energy, connected with the design features of the heat 
exchangers and the mode of delivery of the heat carriers; hydrodynamic, concentration, and 
thermal perturbations introduced with the incoming flows of the initial reactants. 

The combined effect of three factors -- mechanical mixing, perturbations introduced 
with the incoming flows, and the geometric features of the working volume of the apparatus -- 
lead to the formation of a certain topology of the flows. This topology, i.e., the hydro- 
dynamic structure of the flows in the unit, is defined the character and location (within 
the space of the working volume of the unit) of macrohydrodynamic irregularities: stagnant 
zones, by-passes, zones of laminar and turbulent flow, circulation currents, etc. 

In the process of changes in the hydrodynamic structure of the flows in the apparatus, 
its basic quantitative characteristics change as well: the distribution of particles of the 
continuous and dispersed phases with respect to trajectory and time in the unit (which limits 
the capacity of the unit in terms of each phase)~ the distribution of the dispersed-phase 
inclusions with respect to size, etc. The features of the hydrodynamic structure of the 
flows and the geometry of the apparatus affect the formation of concentration and temperature 
fields within the volume of the apparatus. The perturbations from the incoming flows and 
the mode of delivery of thermal energy to the unit also contribute importantly here. 

Each level of the above-examined hierarchical structure of the PCS is characterized 
by a corresponding form of mathematical description. The basis for the description of the 
first level is comprised of the phenomenological and statistical methods of physicochemical 
kinetics and chemical thermodynamics. The central problem at this level is interpreting the 
mechanisms of molecular interactions and calculating kinetic constants -- the coefficients 
of molecular diffusion. 

At the second level of the hierarchy, the information of the preceding level is augmen- 
ted by and interpreted with allowance for data on the degree of segregation of the system and 
the structure of the supermolecular formations. The tools at this level are mathematical 
models of segregation of the flows, as well as various theories of heterophase processes. 

Description of effects of the third level is based on methods of the mechanics of small- 
scale flows around dispersed-phase inclusions and of the thermodynamics of surface effects, 
methods of investigating the equilibrium of multicomponent systems, and various theories of 
interphase transfer. 

The effects of the fourth level of the PCS hierarchical structure may be described 
using the methods of the statistical theory of continua, methods of the mechanics of dis- 
persed systems, models constructed on the basis of mathematical methods of the kinetic theory 
of gases, etc. 

Equations of the first, second, third, and fourth levels of the hierarchicalstructure 
of the physicochemical system constitute a component part of the mathematical description of 
phenomena of the fifth level, being a mathematical description of subsystems of the entire 
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system on the scale on the apparatus. Experience shows that this descriotion should, first 
of all, be sufficSently simple and convenient, Thus, the information from the lower levels 
should be compressed as much as possible and arranged in a sufficiently simple and compact 
form for use at the fifth level. The information is compressed by evaluating the quantities 
entering into the description of the lower levels in terms of relative magnitude (order of 
smallness); finding the most significant factors affecting the production process, using 
relatively simple modelswith simplified mathematical descriptions instead of exact rela" 
tions, etc. 

Description of Mathematical Model of 

Heat- and Mass-Exchange Processes 

It is apparent from an analysis of the hierarchical structure of PCS phenomena that a 
characteristic feature of the system in question is its dual stochastically determined 
nature. Among the important stochastic features of this system are the character of dis- 
tribution of elements of the phases with respect to time in the unit; the form of distri- 
bution of dispersed-phase inclusions with respect to size; the effects of mechanical inter- 
action of the phases, leading to the collision, breakup, and coalescence (agglomeration) 
of inclusions, the character of distribution of inclusions with respect to degree of chemi- 
cal change, viscosity, density, and other physicochemical properties. 

An effective procedure for analyzing the above-examined effects from a single point 
of view is offered by the methods of phase space and statistical emsembles [4]. Each in- 
dividual inclusion of the dispersed phase is characterized by a position in space, a velo- 
city, and a certain set of state parameters~ By analogy with the ~-space of a statistical 
ensemble of elementary particles in statistical physics, we introduce a multidimensional 
phase space of a polydispersed PCS, the coordinates x of which are divided into two groups: 
external -- coordinates of the position and velocity of the k-th inclusion Xk (e) = (Xlk (e), 
...,x6k(e); internal -- state parameters x(i) = (Xlk(i),...,X~k(i)). Each element of the 
dispersed medium is represented by its own point in the phase space, so that the entire dis- 
persed phase is characterized by the set of these points, forming the so-called "phase gas." 
Let us introduce phase-gas particle probability density p(x, t), defining the probable num- 
ber of representative(1)~ polntst ~ in an element of the volume dx = dx(e)dx(i) about the point 
x(x(e), x " :, as p(x, )dx. The following normalizing condition must be met 

S P (x, t) Ox = 1. 

The balance equation for the number of representative points has the form 

6 0 [v~ (x, t) p (x, t)] ap (x, t_______~) + ~ ax~ ~) 
at i=i 

+~__~ Ox~.--- Y [vj(x, t)p(x, t)] =q(p(x, t),'t), (1) 
]=1 

where vi(x , t) is the i-th component of the velocity of the representative points in the 
phase space; q(p(x, t), t), a term characterizing the rate of generation or destruction at 

dlnates x(e) x(i) moment t of particles with the coor " , " due to their interaction and the 
presence of external sources and sinks; E, number of internal generalized coordinates of the 
system. 

Taking as internal coordinates such physicochemical characteristics of the dispersed- 
phase inclusions as the residence time of the particles in the apparatus T, the characteris- 
tic dimension or volume of the particles r, the concentration of the k-th key component in 
the particle Ck, temperature T, density p, and viscosity ~, we write Eq. (i) in expanded 
form 

0 e X (i), Op(x(~)'Ot x(Ot) + /~. ~ [vi(x (e), t)p(x (~), t)l 

q- ~0  [-~--t p (xC~), x(~ t)] -k ~or [--~t p(x(~)' x(~ t) ] 

n 0 
+~__l O-~h [l~p(x(~, x(~ I)]+~TIP(x(e),x(O, t) 
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x 1=I . . . .  cv l j  q- ~ - f~-p(x  (0, x (0, + [ - ~ - p ( x  (~), t) q (p (x  (~ O, t ) ,  
(2)  

where x(i) = (T, r, ci, .... on, T, p, ~); I k=dck/dt, rate of the chemical reaction in the 
dispersed phase with respect to the k-th key component; n, number of key components out of 
the total number of components reacting in the dispersed phase; AHj, calorific value of the 
j-th reaction; N, number of reactions in the dispersed phase; Cp, heat capacity of the 
dispersed phase. 

The balance equation for the properties of the particle ensemble (2) (BPE equation) is 
valid for any dispersed system that can be described by continuous functions of state, so 
that it is sufficiently universal in nature. It always serves as the basis of that part of 
the mathematical model of the PCS which describes the stochastic properties of polydispersed 
PCS's. The BPE equation is an effective means of studying the stochastic properties of 
many heat- and mass-exchange processes in polydispersed media -- the processes of mass 
crystallization, extraction, absorption, redistillation, etc. The BPE equation is closely 
allied with the practically important concept of the distribution of elements of a flow 
over the residence time in an apparatus. It is apparent from the structure of the BPE 
equation that the DRT (distribution of flow residence time) function is one of the cross 
sections of multidimensional density of the distribution function p(x(e), x(i), t) in the 
BPE equation with respect to the internal coordinate T -- time of residence of the particles 
in the apparatus. This explains the fact that the main mathematical models of the hydrody- 
namic structure of flows in apparatus based on the DRT concept are a direct outgrowth of 
the BPE equation (i). 

The description of the determined component of the functional operator of the PCS is 
based on phenomelogical equations of the thermohydrodynamics of multiphase multicomponent 
systems in which chemical reactions occur jointly with heat- and mass-transfer phenomena. 
Generalized closed systems of equations of thermohydrodynamics have been formulated on the 
basis of representations of mutually penetrating multivelocity continua for two cases: i) 
a monodispersed mixture of two phases where there is multicomponent mass and heat transfer 
with chemical changes; 2) a polydispersed medium with phase transformations, with a random 
particle size distribution. For the first case, assuming the symmetry of the stress tensor 
for the continuous phase and the absence of the effect of electromagnetic fields, the fol- 
lowing system of equations of thermohydrodynamics was obtained [5]: 

N 

d i P i h + p ~ h v V  l ~ - - v j ih 'q -J~(20- -Jkc t~ )@~vk( l r ) I (~r ) (k  : 1, 2 , . . . , n ) ;  
dt 

d2pe~ 
q- pehvv~ = - -  vjeh q- Jh(~) - -  Jh(m @ ~ ,  vhe)I(e~) (k = 1, 2, . . . ,  n); 

dt r = l  

d~p~ -t- PiVV~ : J(ei)--J(ie)  ; 
dt 

d~p~ -t- p~VV~ = J(~e) - -  J (m ; __Oa _~ V (ave) = 0 ; 
dt Ot 

Pe dev~ _ ~2V P @ f(~e) ~- J(i~) (v(~)--  v e ) -  J(e~) (v(~o - -  vz) q- ~ p2hFzh ; 
dt ~=~ 

P i - -  
dlvt 
dt 

k = l  

ddti a l p  dlPl~ @ ~lf(t2) ( V t - - V ~ ) "  qt o; Pt - -  - 1 - T 1  e~  -t-" 
dl pO dt 

q- J(zi) ( v ( ~ ~  vt)z J(i2) (v(~) - -v~)  z n 
2 2 ~ Jh(20 (ii - -  i~k,~) - -  

k = l  

Jk(t2) (i2k,~ - -  it) + q(~-O - -  vqt  + P~Qi + ~ FlkJi~ " 
h ~ l  k ~ l  

d p2 v2 ) P~. d ~ u ~ _  ~ P  2 o (v (~2) - -v~)  ~ 
dt pO T q- x.,f(i2) (vi -- q- J(io.) 2 
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(v(~l) ~ v~) 2 n 
-- J(=n 2 ~ Jh(~i) (iik,~ -- i=) ~ Jk.~) (io.k,~ -- i~) 

b,=l  h = l  

k = l  

P i = P 2 = P ;  = , + t z ~ = l ;  tz~=cr • 2 1 5  p~  

po = p~/=~; ~ p~ = p~; p~ = p~; j~ = p~(v~ --v~) ; 
h = l  h = l  

j.2k P~h(V2h V2); d~ O O d (q, l =  1, 2, 3). 
= - -  , ~ + v ~ v  ~ + v7 Ox-- v dt Ot Ot (3) 

Here, the first and second equations are the equations of the weight content of the 
k-th component in the continuous phase (phase i) and the dispersed phase (phase 2); the 
third and fourth equations are the equations of the weight contents of phases i and 2; the 
fifth equation is the balance equation for the number of particles; the sixth and seventh 
equations are the equations of motion of phases I and 2; the eighth and ninth equations 
are the equations of the flow of heat to phases i and 2. 

For the second case, the system of integrodifferential thermohydrodynamic equations, 
including the particle-size distribution function f(r) as the unknown variable, has the 

d i v l  
P l - -  

dt 

form [6]: 
R 

apt + V (PiVi) = - -  y p~ 
O/ ' 

o 

dr n 
Pt--~- = - - V J  + (c - -  m) ~ p~ ; 

o 

Ofot + v (~v~) + ~ fin) = qtru ; 

R R 

~ + V~'r~ - - . f  P~ + p~F~ - -  .i pO ~1 (v2 - -  v0  dr; 
o o 

D ~ v 2  = _ _  v__P.P 
Dt p~ + i(n)(r) + V~(r) ; 

Pl dtut _ z~z e~t+ n i (v~ i_ Vi)Z - --  P2[rf.2) (vt - -  v~) dr "4- plQJ + pff~l 2 dt .! o o ~ dr - -  j' q ~ d r - -  Aqi ; 
o n 

(po fr) D~'u-----L = --q2a (r) - -  vq~ (r) +(p~ Q~ (r)" 
Dt 

13 1_ 
0 ~ . 

Dt 

qi = - -  X~vTi; q~. = 4ndZf~ (T~ - -  T.)  (i = 1, 2) ; 
R 

1' o a i +  rf(r)  d r =  1; P l = P 2 a d  p O _ c o n s t ;  j = p t c ( v ~ - - v , ) ;  
o 

_ _  O d i __ 0 -t-v~vq; D2 _.. @ +v~v q + ~1 
dt Ot Dt dt dr (4) 

Here the first and second equation describe the weight contents for the carrier phase 
and the solution; the third equation is the balance equation for the number of particles; 
the fourth and fifth equations are the equations of motion of the carrier and fourth phase, 
respectively (the r-th phase is taken to mean a group of particles of volume r); the sixth, 
seventh, and eighth equations describe the flow of heat to the carrier phase (r-th phase) 
and phase boundary, respectively. 
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The notation used in systems of equations (3) and (4) is explained at the end of the 
article. Systems (3) and (4) play an important role in the overall strategy of systems 
analysis of the processes of heat and mass transfer, since they serve as the starting point 
for the transition to simPler descriptions in the solution of specific problems. 

One of the most important trends in the synthesis of a functional operator for a heat- 
and mass-transfer process occurring in a production unit is the transition to simplified 
(idealized) representations of the internal structure of the physicochemical processes tak- 
ing place in the system. This approach is based on a set of typical structures (standard 
models of processes in chemical engineering). Each of the standard idealized models 
reflects a given type of transfer or transformation of a substance and is characterized by 
an appropriate functional operator. The block principle [7, 8] is used in constructing the 
complete mathematical model. According to this principle, after a set of elementary proces- 
ses has been established, each process is examined separately (in blocks) under conditions 
that approximate the actual service conditions of the object of the modeling as closely as 
possible. As a result, each elementary process operator is made to correspond with an ele- 
mentary functional operator with parameters that are sufficiently close to the actual values. 

Representation of the mathematical model of the process in the form of an ensemble of 
subsystems (blocks) in turn makes it possible to represent the procedure of its construction 
as a set of operations formulating the mathematical models of the individual subsystems, 
i.e., it makes it possible to realize the block principle. The overall structure of the 
mathematical model of mass transfer processes is shown in Fig. I. 

The use of the block principle of constructing mathematical models of the processes in 
question, based on the systems approach, also helps indicate ways to solve such important 
practical problems as scaling diffusion processes. From the position of mathematical model- 
ing, the change in scale amounts to nothing more than determining the mathematical model 
with a change in the geometric dimensions characterizing the equipment formulation of the 
process. When the block principle of constructing a mathematical model is employed, the 
effect of the geometric dimensions on the properties of the process is manifest only in one 
subsystem, namely the "Hydrodynamics" subsystem. Thus, the change in scale can be made, 
given a mathematical description of this subsystem that is sufficienffly accurate in both 
the quantitative and qualitative senses. 

In principle, each block of the mathematical model may have a different degree of 
detail of mathematical description. It is necessary only that the input and output vari- 
ables of all of the blocks of the model be mutually consistent, so as to obtain a closed 
system of equations for the mathematical model of the process as a whole. As concerns the 
composition of the internal variables of the blocks, there is a fairly large freedom of 
choice. Ideally, the mathematical description of each block would include equations whose 
parameters are only physicochemical properties of the separable components of the mixture, 
as well as geometric characteristics of the equipment and factors accounting for assigned 
external effects. However, at present, it is not always possible to obtain such detailed 
descriptions of the individual blocks. This is generally connected with the excessive com- 
plexity of the mathematical description of the block, which in turn seriously complicates 
the mathematical model of the process as a whole and, moreover, may lead to certain com- 
putational difficulties. Thus, in the practical application of the block principle, it is 
sometimes necessary to employ empirical relations to mathematically describe each block at 
a given level of detail. 

The main problem in calculating the quantity of a substance transferred between phases 
is determining the rate of this transfer. It is well known that there are several models 
of such a transfer: two-film model; boundary diffusion layer model; surface permeation and 
rejuvenation model; adsorption model; interphase turbulence model. All of these models in 
one way or another explain the character of mass transfer between phases, but none of them -- 
except for the interphase turbulence model -- account for the interaction of the flows of 
the phases during their movement, even though the counterflow motion most characteristic of 
industrial processes has a significant effect on the hydrodynamic conditions on free sur- 
faces. 

The most general form of mass-transfer equations allowing for the interaction of phase 
flows may be obtained using the principle of systems analysis and the qualitative descrip- 
tions of the third, fourth, and fifth degrees of hierarchical interaction in a PCS offered 
above. 
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Given a nonsteady two-phase flow, due to the ~ariable velocities of the phase flows 
and the variable physicochemical characteristics following from the conditions of interphase 
turbulence [8], with the introduction of the factor of the hydrodynamic state of the two- 
phase system 

/ 

where L, G are the liquid and gas flows; Pi and pg, their respective densities; ~i and ~g, 
viscosities, the equations of mass transfer in the stochastically determined interpretation 
take the form: 

for the gas phase 

for the liquid phase 

NUdg= A RegPrg(1 Jr [*) (5) 

NUdi = A R~mP~ (1 @ f*) .  (6) 

With f* = 0,  Eqs.  (5) and (6) a r e  c o n v e r t e d  to  the  m a s s - t r a n s f e r  e q u a t i o n s  o b t a i n e d  from 
t h e  t w o - f i l m  model and ,  f o r  a l l  p r a c t i c a l  p u r p o s e s ,  d e s c r i b e  mass t r a n s f e r  i n  a s i n g l e - p h a s e  
f l ow  or  a f low w i t h  a f i x e d  s o l i d  b o u n d a r y .  

In  a c c o r d a n c e  w i t h  t he  s t r u c t u r e  o f  m a s s - t r a n s f e r  e q u a t i o n s  (5) and (6 ) ,  t he  q u a n t i t y  
o f  t r a n s f e r r e d  s u b s t a n c e  i s  d e t e r m i n e d  by the  t r a n s f e r  o f  the  s u b s t a n c e  i n t o  t he  phase  i n  
which the  t r a n s f e r  t a k e s  p l a c e  most  s l o w l y ,  i . e . ,  where most  of  t he  d rag  i s  c o n c e n t r a t e d .  
Thus, if the gas is readily soluble in the liquid, then Eq. (5) is used. If it is not 
readily soluble in the liquid, then Eq. (6) is used. Accordingly, the mass-transfer coef- 
ficients in the Nusselt numbers are divided by the coefficients of molecular diffusion of 
that phase mn thich the process takes place most slowly. The Prandtl number of the phase 
where most of the drag is concentrated is introduced in exactly the same way, but since 
the coefficient of molecular diffusion appears in the denominator on both sides of the 
equations, the resulting effect of this coefficient on the mass-transfer coefficient will 
depend on the index in the Prandtl number; the higher this index, the less the effect of 
molecular diffusion on the mass-transfer coefficient. 

Since the Prandtl number characterizes the ratio of velocity and concentration profiles, 
which are determined by the molecular characteristics, we can expect the effect of this 
ratio on process of mass transfer to change in relation to the hydrodynamic conditions, 
i.e., there should be a change in the index in the Prandtl number. With the most uniform 
distribution of the liquid and gas in a two-phase flow under conditions of developed free 
turbulence, in accordance with the structure of Eqs. (5) and (6), the index n should reach 
a maximum value equal to unity. With a reduction in the turbulence of the flows, the index 
n of the Prandtl number should decrease, reaching a limit of zero when movement ceases. 
In the latter case, the concept of a ratio of velocity and concentration profiles loses 
its meaning. In practice, in accordance with normal hydrodynamic behavior modes of diffu- 
sion flows, the index n of the Prandtl number should change within the limits from 1/3 
(laminar mode, if we may conditionally apply this terminology to a two-phase flow) to 1 
(mode of developed free turbulence). Specially designed experiments have shown this to be 

the case [9]. 

Permitting an analogy to be made between friction and mass exchange in a single-phase 
gas flow, we may determine the order of magnitude of the exponents m and n in Eqs. (5). 
Energy consumption on friction in a single-phase flow is determined by the shear stress, 
which is proportional to the pressure drop: 

APg = - -  pg (v -t- ep) dvq dx----- l (q =/= l), (7) 

where pg is the density of the gas; v and ~p, coefficients of molecular and eddy viscosity. 
Accordingly, the diffusion flow is described as follows: 

dc (8) 
q = - - ( D m - l -  Dt] d--x- 

936 



with numbers Reg and Prg. 
Reg=vde/~ , m=O, n=1/3 
equation 

Taking into account the order of magnitude, the last two relations may be represented 

as follows; 

Apg = -% (~ + ~)v/l, (9) 

q : - -  (D m @ D t ) Ac/l. (10) 

Having divided (i0) by (9), assuming that the mass and energy transfer take place over 
the same length l, and solving relative to q/Ac, we obtain 

q _ (Din+ D t ) A ~ _ .  (11) 
Ac p (v + ep) v 

But s i n c e  q/Ac = K (K i s  t h e  t o t a l  m a s s - t r a n s f e r  c o e f f i c i e n t ) ,  Eq. (11) may be r e p r e s e n t e d  
i n  t h e  form 

K = (Din @ Dg) A~:/pg(V @ sp) v. (12) 

Given the same value of the dynamic-state factor f* for the two-phase system, the 
coefficients of turbulent transfer of mass D t and energy Sp are of the same order of magni- 
tude. Thus, the following proportional relationship is established between the coefficient 
of mass-transfer K, the pressure drop APg, and the flow rate v: 

K ~ A~/v .  (13) 

Equation (13) allows us to evaluate the order of magnitude of the exponents in Eq. (5) 
for different hydrodynamic conditions. 

Three types of dependences of the pressure drop APg on flow rate v are possible: for a 
laminar mode, APg %v; for a turbulent mode, APg ~v~'S; for developed turbulence (progressive 
mode), APg ~v =. We can evaluate the exponents in the generalized mass-transfer equation (5) 

For the laminar mode, APg ~v, so that K~v ~ However, since 
Thus, for the laminar mode we obtain the following mass-transfer 

from which for the laminar made 

Kde --_ Ao(~mm) '/a 
Din" (1 ~- fo),  (14) 

K -  D&/3 . (i5) 
Since factor f~ is very small (less than unity) under conditions of very low flow rates, 
Eq. (14) reduces to the form 

NVd~'~const. (16) 

E q u a t i o n  (16) e x p r e s s e s  t h e  c o n d i t i o n  o f  m o l e c u l a r  t r a n s f e r  o f  t h e  s u b s t a n c e ,  b e i n g  a 
s p e c i a l  c a s e  o f  t h e  more g e n e r a l  e q u a t i o n  (5 ) .  

For  t he  t u r b u l e n t  mode, A P g ~ v  z ' s ,  so t h a t  K ~ v ~  m = 0 . 8 ;  n = 2 / 3 ,  and t h e  m a s s - t r a n s -  
f e r  equation assumes the form 

K., =A,( / \-V-) \~) (~ + fT ). (17) 

It follows from Eq. (17) that 

nil3 (18) K~nq - 

For the mode of developed free turbulence, APg~v 2, so that K~v; m=l; n=l, and 
the mass-transfer equation takes the form 

It follows from Eq. (19) that 

i.e., mass transfer under conditions of developed free turbulence is practically indepen- 
dent of molecular diffusion and viscosity. By eliminating the molecular characteristics on 
on the left and right sides of Eq. (19), the latter can be written as follows" 
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or in dimensionless form 
K = A~v(1 -5 f~ ) (21) 

Since, under conditions of developed free turbulence, the factor may significantly 
greater than unity, Eq. (22) is written thus: 

v ~ 0 /  (% / \1%/ ' 

and the coefficients of molecular diffusion are omitted frSm the equations; exponent c: is 
small, close to zero. 

The hydrodynamic-state factor of the two-phase system may be independently determined. 
Meanwhile, it follows from an analysis of the hydrodynamics of the two-phase flow that fac- 
tor f* will be a function of a dimensionless complex number which expresses the relation- 
ship between the principal variables in the following degrees: 

A n a l y s i s  of  the  mechanism of  mass t r a n s f e r  i n  a s i n g l e - p h a s e  f low shows t h a t  t h e  a n a l -  
ogy be tween  f r i c t i o n  and h e a t  and mass exchange  i s  v a l i d  o n l y  a t  numbers Pr d = 1, i . e . ,  f o r  
g a s e s .  For  l i q u i d  d r o p l e t s ,  f o r  which  Prd i s  o f  t he  o r d e r  o f  10 3 , t h e  a n a l o g y  does  n o t  
h o l d .  Thus,  t h e  i n d i c e s  f o r  t h e  numbers Rei  and Pr i c a n n o t  be  p r e d i c t e d ,  and t h e i r  v a l u e s  
i n  Eq. (6) have  to  be d e t e r m i n e d  e m p i r i c a l l y .  

Determination of Adequacy and Identification 

ofthe PCS Mathematical Model 

The final step in the systems analysis of mass-exchange processes ischecking the 
adequacy and identifying the operators of the PCS (of the mathematical models). For sys- 
tems described by linear differential equations, in checking for adequacy the parameters 
of the model are found by analyzing the empirically determined DRT function. This analysis 
is usually done by the moments method. To represent the behavior of the PCS in the general 
(nonlinear) case, it is sometimes sufficient to perform a linearization and to study the 
behavior of the system in the vicinity of the assigned steady-state mode. 

We can also use the principle of discrete (independent) determination of parameters 
of the model such as the coefficients of resistance, heat transfer, or mass transfer using 
physical modeling. It should be noted that the structure of the functional operator of the 
PCS usually consists of two parts: a linear part, reflecting the hydrodynamic structure of 
the flows in the production unit, and a nonlinear part, reflecting the kinetics of the phy- 
sicochemical changes. 

Of course, a search for the parameters of the PCS operator should be attempted within 
the class of linear operators using the methods for identifying linear systems. However, 
this is possible only in those cases where the degree of nonlinearity of the system in ques- 
tion is sufficiently slight and the errors of the determination fall within tolerable limits. 
If the degree of nonlinearity is substantial, it is generally not possible to remain limited 
to a linear description of the object, and the problem of identification must be solved 
within the class of nonlinear operators. 

A promising approach to evaluating the functional operator of the PCS within the class 
of nonlinear operators is based on the concept of a penalty function for the error and is 
formulated as Bayes' approach to solving identification problems. The use of the error 
penalty as a characteristic of the deviation of the estimate from the true value of the 
variable expectation value leads to two important types of estimatesg the a posterior pro- 
bability (APP) and the maximum likelihood (ML), the relationship between which is expressed 
by Bayes' formula. 

Depending on the method of minimizing the APP or ML penalty functions, the computation- 
al methods of identification are divided into two groups~ direct and indirect. The first 
group includes those methods involving direct minimization of the penalty function at each 
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step of the observation interval, specifically; the gradient metho~ and its many variations, 
the method of stochastic approximation, etc. The second approach to ~olving the identifica- 
tion problem consists of using the principles of control theory at each iteraction step. 
In particular, Pontryagin's maximum principle, the method of Langrangian multipliers, etc., 
are used to minimize penalty functions. Here, the corresponding system of canonical equa- 
tions with the necessary boundary conditions constitutes a typical nonlinear two-point 
(beginning or end of observation interval) boundary problem (TPBP), the solution of which is 
the value sought for the assigned observation interval. The computational methods used to 
solve the above TPBP constitute the group of so-called indirect computational methods of 
solving identification problemsu This group includes the method of quasilinearization, the 
method of invariant immersion, the trial run method, etc. 

The above scheme for solving the identification problem is by no means universal. It 
has serious limitations having to do with those assumptions set forth in the original for- 
mulation of the problem. Among typical situations to which the above scheme is inapplicable 
are: where the unknown parameters are not constant, but "drift" over time; where a priori 
information is lacking on the dispersion of the measurement errors; where object noises 
and measurement interferences are random processes different from white noise; where object 
noises represent the realization of nonsteady random processes; where object noises and 
measurement interferences correlate, etc. The above situations are especially characteris- 
tic of processes in the chemicals industry. Practically each of the above instances of a 
complication of the identification problem requires the use of special methods and proce- 
dures, the choice of which depends to a large degree on the specific conditions of the prob- 
lem. 

One way of overcoming the difficulties arising in problems of evaluating state param- 
eters and identifying mass exchange processes is the use of statistical dynamics, operating 
with integral operators and weight functions for the systems being studied. The integral 
form of relationship between the input and output signals, in terms of the weight function 
of the system, is advantageous both from the viewpoint of resistance to interferences and 
with regard to the efficiency of the computational procedures. It is a virtue of this 
approach to solving identification problems that it opens up the possibility of making 
broad use of the exceptional properties of analytic processes in synthesizing optimum oper- 
ators of objects with a finite "memory." It should be noted that the requirement of linear- 
ity of the system in order to realize the method only slightly diminishes its generality. 
The method is applicable to a broad class of nonlinear objects in chemicals technology if 
the techniques of nonlinear transformations of random functions are used. 

In conclusion, it should be noted that objects in the chemicals industry involving heat 
and mass transfer processes are characterized by a high degree of nonlinearity, a substan- 
tial degree of distribution of parameters in space and time, transience and mutual correla- 
tion of input noises and measurement interference, continuous drift of process indices, 
deformation of the physicochemical structure of the processes occurring in the objects, etc. 
The above factors are the source of serious problems that arise in solving problems of 
estimating state parameters and identifying the object on the basis of the standard methods 
recommended by the modern theory of dynamic systems and examined above. 

For example, experience in the practical realization of problems of estimating state 
parameters and identifying chemical processes using Kahlman filters [i0, ii] has made it 
possible to discover several important limitations of the above approach with regard to 
solving these problems in the area of chemicals technology. Such limitations may be traced 
in part to the use of differential operators to describe the system mathematically and the 
finite-difference approximations of these operators in numerical operations. The realiza- 
tion of mathematical models such as these on a computer using the methods of formal algebra 
under conditions of high noise levels and rough initial estimates of state parameters is 
often associated with poor matrix conditionality and, thus, with instability and poor con- 
vergence in the computing procedures. 

The questions involved in the study of the stability and convergence of computations 
in problems of identification and estimates of state parameters are so extensive and diffi- 
cult that they now constitute an independent problem in and of themselves and entail the 
development of special methods and techniques for overcoming the aforementioned difficulties. 
Such methods and techniques include quasilinearization, stochastic approximation, invariant 
immersion, the gradient method and its many variants, etc. However, the use of these formal 
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mathematical procedures by no means mitigates the very stringent requirements with respect 
accuracy in assigning the initial conditions on the state parameters and the initial estim- 
ates of the sought constants of the models, as well as with regard to the level of object 
noise and measurement interference. Additional complications arise in the case of tran- 
sience and correlation and non-Gaussian nature of the noises, as is characteristic of 
objects in the chemicals industry�9 Thus, in solving problems of identification and esti- 
mating stateparameters for chemical industry processes, it would be expedient to make 
broader use of the possibilities offered by the formal apparatus of statistical dynamics 
and the theory of random functions on the basis of the use of integral operators and weight 
functions of the systems being investigated. It is important to emphasize that, in many 
cases, the weight function of an object in chemical technology is a function of the dis- 
tribution of the time of residence of the particles of the substance in the production unit 
and is therefore a natural characteristic of the object [12, 13]. 

NOTATION 

In Eqs. (3) and (4): p~ o P2k, true density of the k-th component in phases 1 and 2; 

0 ~ ,  0 �9 0 0 0 O � 9  0 Pl = Plk, p2, true density of phases i and 2, plk=a~plk; p2k=a2p=k; p1=a~pl, ~2=~2p~, 
h=l 

mean density of the k-th component in phases 1 and 2 and the mean density of phases i and 2; 

I " 
~I and ds, volume contents of phases i and 2; vl =1~ VzkPlk: vs=~kz.~ Iv2kp=k, mean mass 

rates of phases 1 and 2; Vik , velocity of the k-th component in the i-th phase; Jk(is), 
Jk(=~), "observed" macroscopic rates of interphase transfer of the k-th component in the 

2 directions 1+2 and 2+1; J(sl) = Jk(21); J(is) = Jk(12), J(zr), J(sr), rates of the 
h = l  h = l  

r - t h  r e a c t i o n  i n  the  volume of  phases  1 and 2 ( r = l ,  2, . . . ,  N); v k ( l r )  = B k ( l r ) H k ;  Vk(sr) = 
Bk(2r)Mk; ~k(ir); ~k(sr), stoichiometric coefficients for the k-th component participating 
in the r-th reaction in phases 1 and 2; M~, molecular weight of the k-th component; a is 
the number of particles; P, pressure; rlq ~, e~q Z, components of the stress and strain ten- 
sors (q, I = i, 2, 3); f(:r) mass force due to the interaction between phases and including 
three effects (Stokes friction force, effect of virtual mass, Zhukovskii force), v(2~), 
v(~2), mean mass rates of the masses crossing the phase boundary in the directions 2+1 
and i+ 2; F~k, Fsk, external mass forces acting on the particles of the k-th component in 

n n 

phases i and 2; FI = ~ Fzk~ Fs = Z F2k; ul and us, specific energy of phases I and 2; 
h = l  k = l  

~ and ~s, fraction of kinetic energy of the mixture dissipated by the forceful interaction 
of the phases into the form of internal energy of phases 1 and 2 (~1+'~s=l); i~ and is, 
specific enthalpy of phases 1 and 2; i~k,s, i2k, s, enthalpy of the k-th component in phases 
1 and 2 at equilibrium; q(2~), heat flux in contact heat exchange between the phases; ql 
and q2, heat flux in phases 1 and 2; Q~ and Qs, power of the external heat sources; cf, 
form factor of the particles; ~, observed rate of change in the volume r of the particles 
(0< r--<R); c, mass concentration of the dissolved substance, calculated from the anhydrous 
product; m, ratio of the molecular weights of the anhydrous salt to the crystalline hydrate; 
f, particle size (volume) density function relative to a unit volume of the mixture; qtru, 
density (power) of the source (sink) of particles of volume r, u~, surface energy associated 
with one inclusion, q~, qso, heat fluxes, relative to a unit volume of the mixture, from 
the carrier and r-th phases to the phase boundary; Q* and Q*, external flow of heat to the 
carrier and r-th phases; i~ and i2, specific enthalpies of the carrier and r-th phases; %, 
thermal conductivity; ~i, coefficient of heat transfer from the i-th phase to the phase 
boundary; TI, Ts, To, temperature of the carrier phase, dispersed phase, and phase boundary 
(at the surface of the crystal). 
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